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1 . Main points

The effects of long-term exposure to air pollution as a factor that increases coronavirus (COVID-19) 
mortality appear smaller than those reported in previous studies -- though our upper-bounded estimates 
are similar in magnitude to some studies.

The estimated correlation (in models without further controls "raw") between air pollution and age-adjusted 
COVID-19 mortality rates when calculated using deaths earlier in the pandemic was higher than that found 
later on (including later deaths) as the disease spread more widely.

Re-analysing the raw correlation with each new week of mortality data showed that the correlation fell 
rapidly and then stabilised but at a similar rate to the death rate change; it is therefore not clear whether 
the remaining air pollution effect shows an independent causal connection or reflects other factors such as 
where the infection reached before lockdown took effect.

Further modelling was carried out including (where they improved the model fit) controls for sex, ethnicity, 
Indices of Multiple Deprivation (IMDs), smoking rates, cardiovascular co-morbidities for COVID-19, "other" 
co-morbidities for COVID-19, and population density.

There is significant collinearity between ethnicity and air pollution, making it impossible to entirely separate 
the effects of these covariates with the confounding variables for which data are available; if there is a 
causal link between air pollution and COVID-19-related mortality, it would partially explain the disparities in 
COVID-19 outcomes for minority ethnic groups.

For long-term exposure to fine particulate matter (PM ), we estimated odds ratios for a 1 µg m  change 2.5
-3

in long-term average exposure of between 1.01 (statistically insignificant) and 1.07 (when ethnicity is 
removed from the model entirely).

For NO , we estimated odds ratios for a 1 µg m  change in long-term average exposure of between 1.006 2
-3

(statistically insignificant) and 1.02 (when ethnicity is removed from the model entirely).

This analysis indicated that air pollution was unlikely to be the sole driver of disparities in mortality statistics 
for minority ethnic groups and as such, the scale of correlation found when ethnicity is not controlled for is 
likely to be an overestimate of the air pollution effect.

A similar trend but with a negative correlation with COVID-19 mortality was found for ozone exposure: in 
the absence of any known reason for why ozone would provide a protective effect, a more likely 
explanation is that exposure to higher ozone is acting as proxy for living in the rural environment; this 
provides some further evidence that at least some of the correlation we can see is driven by infection rates 
rather than an underlying causal relationship between air pollution exposure and COVID-19-related 
mortality.

2 . Executive summary

The Office for National Statistics (ONS) was asked by the Scientific Advisory Group for Emergencies (SAGE) to 
take the lead in investigating UK data for any correlations between common air pollutants that are known to 
impact respiratory and cardiovascular health and rates of coronavirus (COVID-19) related mortality. This was in 
response to some initial studies from the US and Italy that suggested a significant positive correlation between PM

 and NO  exposure and COVID-19 mortality rates. The work was to be carried out at a population scale, rather 2.5 2
than individual, and based on existing data sources.
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Literature

Previous studies have proposed a relationship between air pollution and COVID-19-related mortality. Wu et al. 
 reported that based on particulate matter concentrations derived from satellite aerosol optical depth (2020)

measurements, "long-term exposure to PM  is positively associated with increased COVID-19 mortality". Wu et 2.5

al. specifically reported that a 1 µg m  increase in average PM  exposure would lead to an 8% increase in the -3
2.5

baseline death rate.  used ambient ground-level air pollution data from air quality monitoring Conticini et al. (2020)
sites in Italy to provide "evidence that people living in an area with high levels of pollutant are more prone to 
develop chronic respiratory conditions and suitable to any infective agent."  worked at Travaglio et al. (2020)
regional and individual scales in England in April 2020, finding "an association between a 1 µg m  increase in -3

sulphur dioxide and nitrogen oxide levels with a 17% and approximately 2% increase in COVID-19 mortality, 
respectively." , the most recent paper, based on data from the Netherlands, found that a 1 µgmCole et al. (2020) -3

increase in PM  exposure would increase the baseline death rate by between 13% and 21.4%.2.5

Air pollution and public health

This study looks at the relationship between COVID-19 mortality and air quality using English datasets. Three 
major air pollutants that form part of the  are included as variables EC Ambient Air Quality Directive (2008/50/EC)
in this study. These are: PM  (an operationally defined metric for fine particulate matter with an aerodynamic 2.5
diameter smaller than 2.5 microns), nitrogen dioxide (NO ) and ozone (O ). While there are a very wide range of 2 3
different air pollutants that are known to be harmful to health, PM , NO  and O  are the most abundant and 2.5 2 3
relevant in the context of COVID-19. These have well-established negative effects on respiratory and 
cardiovascular health. They are also linked to adverse outcomes in neurodevelopment, cognitive function and 
other chronic diseases such as diabetes. The effects of exposure to each air pollutant were reviewed in detail by 
the  in 2013. Air pollution can negatively affect human health through short-World Health Organization (WHO)
term (days to weeks) transitory exposure and long-term accumulated exposure (over years to decades), with the 
latter considered to cause the greater harm, according to a study by .Pope (2008)

The geographic distribution of the three pollutants across the UK is different in each case, reflecting their 
emissions sources and atmospheric lifetimes. NO  is predominantly an urban air pollutant with highest 2
concentrations found in city centres and at the roadside and with a dominant source from vehicle exhaust. It has 
a 1/*e*-folding atmospheric lifetime of around one hour, and so lower concentrations are found in suburban areas 
and the rural environment.

Ozone is a secondary pollutant that is formed from photochemical reactions. Ozone reacts rapidly with nitric 
oxide, a component of combustion exhaust, and this leads to its suppression in urban centres and near roads. 
The highest ambient concentrations, and hence possible exposure to ozone, occurs in the rural environment in 
the UK.

PM2.5 has a complex range of sources. It is emitted directly from processes such as combustion and friction and 

is also formed as a secondary pollutant [4]. It has an atmospheric lifetime of around one to two days and 
concentrations in the UK, and particularly Southern England, can be influenced by transboundary transport of 
pollution from mainland Europe. While the highest concentrations of PM  are found typically in city centres, 2.5
concentrations reduce more gradually moving from urban to rural environments, leading to a relatively narrow 
range of annual average concentrations and exposures, when compared to NO  and O .2 3

https://www.medrxiv.org/content/10.1101/2020.04.05.20054502v2
https://www.medrxiv.org/content/10.1101/2020.04.05.20054502v2
https://www.sciencedirect.com/science/article/pii/S0269749120320601?via%3Dihub=
https://www.medrxiv.org/content/10.1101/2020.04.16.20067405v5
http://ftp.iza.org/dp13367.pdf
https://ec.europa.eu/environment/air/quality/index.htm
https://www.euro.who.int/__data/assets/pdf_file/0004/193108/REVIHAAP-Final-technical-report-final-version.pdf
https://doi.org/10.1080/08958370701492961
https://uk-air.defra.gov.uk/library/reports?report_id=727


Page 4 of 21

The challenge

All of the analyses face the basic challenge of not having a reliable figure for levels of infection in the population 
across the full period of infection and at a sufficiently granular spatial level. Early in the pandemic, we would 
expect infection rates to be highest in cities with global travel connections and with high population densities that 
may lead to greater contagion rates. These are also geographic locations that have higher concentrations of PM

 and NO  air pollution. It has also become clear over the course of the pandemic that 2.5 2 socioeconomic and 

 are strongly associated with COVID-19 mortality rates, and these are also associated with demographic factors
higher long-term exposure to PM  and NO . It is therefore challenging to tease apart a correlation between air 2.5 2
pollution and COVID-19 and geographically other co-located factors that can also influence mortality.

Confounding variables such as deprivation, existing illnesses and ethnic minority groups are all also correlated 
with one another and with air pollution concentrations. These "collinearities" further reduce the capacity of 
standard statistical analyses to find clear correlations at the scale these studies work at. If the correlation is very 
strong, it may be possible to find it, and if it does not exist, it may be possible to present some evidence of a null 
outcome. However, it is very difficult to produce clear definitive conclusions using the data currently available and 
this type of analysis, and it must be accepted that the true picture will likely only emerge once data are available 
for highly detailed individual-based modelling. While we wait for the opportunity to undertake more granular level 
examination of the data, there is potential to undertake further sensitivity analyses on the same basis as this 
study to test its robustness.  

Our approach

The analysis in this article takes a particular statistic approach to examining the relationship between air pollution 
and COVID-19 in an attempt to overcome some of the issues of collinearity and varying rates of infection. This is 
achieved by breaking the country up into sample areas based on the variables of interest rather than census or 
governance-based geographies. In this way, a portion of London may be in the same sample population as 
another part of Newcastle if it shares the same salient characteristics. An assumption in this approach is that an 
increment or decrement in a pollutant such as PM  will have the same health effect wherever it occurs in the 2.5
country. As such, differing rates of spread of the infection are then also distributed more widely.

This approach enables us to examine how our conclusions would have looked if we had used death rates at 
earlier stages of the pandemic and see how any correlation with air pollution has changed over time. This 
reflective approach -- rather than directly controlling for infection rate -- enabled us to see the direction of travel of 
any correlation as the infection spread more widely across the country. If the correlation was increasing or very 
stable with infection, that might be a clear indication we would see a very strong correlation were the infection to 
spread uniformly. A declining correlation as deaths increased may indicate the "real" correlation is smaller than 
measured or perhaps non-existent and that an early association between air pollution and COVID-19 mortality 
was linked to an initial outbreak of disease in large urban centres.

The results

The results suggest that PM  and NO  may correlate with increased mortality rates from COVID-19 infection but 2.5 2
that the scale of impact may be smaller than that reported in earlier papers. Most importantly, once controlling for 
ethnicity as a confounding variable, this reduces the significance of correlation between PM  and NO  and 2.5 2
COVID-19 mortality. This suggests that either PM  and NO  are drivers of disproportionate outcomes for 2.5 2
minority ethnic groups or that PM  and NO  only show up as correlates because of the strong relationship 2.5 2
between populations of minority ethnic groups and areas of high exposure to PM  and NO .2.5 2

https://www.gov.uk/government/publications/covid-19-review-of-disparities-in-risks-and-outcomes
https://www.gov.uk/government/publications/covid-19-review-of-disparities-in-risks-and-outcomes
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In addition, the calculated correlation between deaths and air pollution (for PM  and NO ) was in fact falling 2.5 x
rapidly before the lockdown and continued to fall as deaths rose before levelling out around Week 19 (week 
ending 8 May) of 2020. Conversely, we find that ozone exposure mirrored the correlations for PM  and NO  2.5 2
with a strongly negative correlation to COVID-19 that fell over time. We believe there is no good reason to believe 
that long-term exposure to higher ozone would provide a substantial protective effect. Instead, this negative 
correlation is more likely indicate that higher ozone is acting as a proxy for living in the rural environment -- with a 
potentially lower infection rate. (We note that higher ambient ozone concentrations are plausibly a factor that 
could reduce the viable airborne lifetime of the SARS-Cov-2 virus, but this analysis examines only the effects of 
cumulative exposure over 3, 5 and 10 years.)

It is therefore possible that the relationships we can see represent a snapshot of where the infection reached in 
the country. If that is the case, then air pollution correlations with COVID-19 may have continued to fall further if 
the infection had moved more uniformly across the nation.

3 . Method

Sampling and data linkage

We took a novel approach to sampling to mitigate complexities with respect to:

varying rates of infection

geographic collinearity of explained variables

multi-collinearity of explanatory variables

Instead of using census or governance-based geographic boundaries as the basic unit (the approach used 
elsewhere and more traditionally in air pollution literature), we grouped geographic areas into treatment groups. 
These treatment groups were chosen based on: Indices of Multiple Deprivation (IMDs), population density and 
average PM  exposure over five years. The basic geographic unit built from was individual residential 2.5
postcodes. The mortality and health care data could be linked at postcode level, but all other data had to be 
linked to from larger geographic levels.

National annual average air pollution concentration data are produced at the Ordnance Survey 1 km grid square 
level while the majority of confounding data are produced at the Lower-layer Super Output Area (LSOA) level. 
Whatever geography was chosen as the basic unit, there would be some degree of imprecision in the linking and 
it would depend upon assumptions. Air pollution concentrations were averaged across the 1 km grid square 
already, something that introduces considerable smoothing to the distribution of urban NO  This can average 2.
within the same 1 km grid square high roadside concentrations with lower concentrations away from major roads.

This sub-grid smoothing effect is, however, less pronounced for PM . 1 km air pollution data could be linked 2.5
directly to the postcode. This remains a significant but unavoidable assumption since actual exposure of 
individuals will vary significantly even within a grid square. All other variables were linked to the postcode level 
and aggregated into sample groups based on a weighting of the total number of residential postcodes in the 
LSOA (or, in the case of smoking rates, local authority). This linkage is imprecise at the level of the postcode but 
once those postcodes are aggregated into sample groups, we consider that this level of imprecision is unlikely to 
significantly affect the analysis.

https://data.gov.uk/dataset/c481f2d3-91fc-4767-ae10-2efdf6d58996/lower-layer-super-output-areas-lsoas
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To create the sample groups concentrations of PM , five-year averages were ranked and broken into seven 2.5
groups -- equally split by concentration -- of 1 km grid squares in England. The PM  and NO  are so strongly 2.5 2
correlated (and O  chemically anti-correlated with NO ) that it was not considered necessary to rebuild the frame 3 2
for each pollutant individually. Those seven groups were each split up into quintiles by IMD score (less the 
environmental aspect of the IMD scale, to prevent double counting of air pollution effect). Those 35 groups were 
then each split into quintiles by population density to create 175 sample areas.

This approach combines areas across the country to mitigate to some degree the varying spread and rates of 
infection. We also avoid geographic collinearities in the explained variable, removing the need for weighted 
geographic approaches. A final analytical feature of this approach is that a much smaller proportion of the sample 
would lack deaths related to COVID-19 and have to be excluded at any time period through the pandemic. This 
enabled us to examine how any analysis of correlations between air pollution and mortality might have evolved 
through the pandemic.  

The sampling approach also avoids large numbers of poorer, more polluted parts of the country being 
represented in the raw data, which could squeeze out contrast with polluted but wealthier or less densely 
populated neighbourhoods (notably in South-East England). It is easiest to imagine that we have filed different 
areas into different treatment groups for air pollution, deprivation and population density for which the statistical 
unit would be the treatment group.

More about coronavirus
Find the latest on .coronavirus (COVID-19) in the UK
All ONS analysis, summarised in our .coronavirus roundup
View .all coronavirus data
Find out how we are .working safely in our studies and surveys

Deaths data

Deaths were defined using the International Classification of Diseases, 10th edition (ICD-10). Deaths involving 
the coronavirus (COVID-19) include those with an underlying cause, or any mention, of ICD-10 codes U07.1 
(COVID-19 virus identified) or U07.2 (COVID-19, virus not identified). The spatial linkage was based on the 
deceased's place of residence.

The analysis includes a total of 46,471 deaths involving COVID-19 among usual residents of England where the 
date of death was between 7 March 2020 and 12 June 2020, registered by 22 June 2020. The first death 
involving COVID-19 occurred on 2 March 2020, though analysis in the first week of deaths would not provide 
enough variance to be informative.

Age-adjusted death rates per 100,000 were calculated for each of the 175 sample areas using the standard 
. Age could be adjusted for as a covariate in the model, but the number of covariates required makes approach

this costly in terms of explanatory power. Sex as a single variable is less costly in explanatory power and so was 
included later in the model development.

This sampling strategy will produce a fragmented geography but with the maximum possible variation in air 
pollution and the main socioeconomic variables. This work will need to be done for both NO  and PM  and so 2 2.5
one, both or a combination could be used to create the sample points. To begin with, we use PM .2.5

https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases
https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/articles/coronaviruscovid19roundup/latest
https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/datalist
https://www.ons.gov.uk/news/statementsandletters/ensuringyoursafetyduringcovid19
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/methodologies/userguidetomortalitystatisticsjuly2017
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/methodologies/userguidetomortalitystatisticsjuly2017
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Air pollution

PM , NO , NO  (the combination of NO  and NO, pollutants that are co-emitted) and O  exposure were all 2.5 2 x 2 3
included. The number of days on which the daily max 8-hour concentration is greater than 120 µg m-3 at a 1 km 
grid resolution since 2003 is used for O ; annual average air pollution exposure data are available at 1 km grid 3
square resolution since 2002 for PM  and 2001 for NO  and NO  from the 2.5 2 x UK Air Information Resource (AIR) 

. Please see the UK AIR website for more details on the methods involved in producing these data. The website
value used in the sample area was the average across all postcodes included expressed as a concentration in 
units of µg m .-3

Adjusting for levels of infection

There are a range of possible metrics that could be used as a proxy for infection rate, but all are either potentially 
misleading or lack sufficient granularity. We have taken two steps to mitigate the impact of varying infection rates. 
First, the fractured geography used in our sampling technique will combine different parts of the country, meaning 
that regional variations in infections will, to some degree, be smoothed out. Secondly, we repeated the analysis 
taking multiple snapshots of the infection for each week from Week 11 (week ending 13 March) 2020 to as close 
to publication of this report as possible (Week 24, week ending 12 June 2020).

If any correlation with air pollution begins to fall quickly or even disappear as the infection moves out of urban 
centres, it would be a sign that it could be an ultimately relatively weak or non-existent correlation. This approach 
does not suffer the biases and uncertainties of taking date or first infection or raw test data; however, some care 
must be taken in conclusions based on this approach since it is indicative only and no rigid conclusion should be 
drawn.

Population density

Early discussions of this work identified population density as likely to be related to rate of infection. It is therefore 
included in the sampling approach and confounding variables set as a weak form of infection rate control. The 
data are taken directly from the latest Office for National Statistics (ONS) population projections from mid-year 

.2018 at Lower-layer Super Output Area (LSOA) level

Socio-economic characteristics

We used  scores without the human environmental domain at output English Index of Multiple Deprivation (IMD)
area level since this includes air pollution indices. This precluded the inclusion of Scotland or Wales since they 
use different measures of area deprivation. However, it is a more rounded measure of deprivation than, for 
example, income alone.

Public health

We do not have data on smoking rates at high spatial resolution. However, we do have local authority-level 
. This represents the poorest linkage to the postcode-based sampling areas in smoking prevalence (CSV, 22KB)

this analysis with all other linkages at output area or postcode level.

Co-morbidities

Hospital visit rates for known co-morbidities were calculated from  in 2017 to 2018. These were split into NHS data
cardiovascular and "other" co-morbidities to also examine known relationships of air pollutants on cardiovascular 
diseases. The conditions included were:

https://uk-air.defra.gov.uk/data/pcm-data
https://uk-air.defra.gov.uk/data/pcm-data
https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates
https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates
https://www.gov.uk/government/statistics/english-indices-of-deprivation-2019
https://www.ons.gov.uk/visualisations/dvc643/data_map.csv
https://www.ons.gov.uk/visualisations/dvc643/data_map.csv
https://digital.nhs.uk/data-and-information/data-tools-and-services/data-services/hospital-episode-statistics
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Alzheimer disease

asthma

influenza and pneumonia

other acute respiratory infections

bronchiectasis

cancer

cardiovascular conditions (all: current or recent) -- ischaemic heart disease, angina, myocardial infarction; 
heart failure; stroke; and Atrial fibrillation

chronic kidney disease including renal failure

chronic liver disease including liver failure

chronic obstructive pulmonary disease including respiratory failure

dementia

diabetes

epilepsy

hypertension

inflammatory bowel disease

neurological conditions motor neurone disease, Parkinson's disease and multiple sclerosis

osteoarthritis

osteoporosis

rheumatoid arthritis

serious mental illness

To align co-morbidities with the deaths data, these were adjusted for age in the same manner as the deaths data 
to create a hospital visit rate per 100,000 people. We intended not to reweight them by the age functions related 
to the specific diseases but simply to put them back into alignment with the death data. There was a very clear 
relationship between the unadjusted death and comorbidity data, which was lost when examining the age-
adjusted deaths data.

Ethnicity

Ethnicity data from the 2011 Census were used to estimate percentages of each population in broad ethnic 
 of:groups

https://www.nomisweb.co.uk/census/2011/qs201ew
https://www.nomisweb.co.uk/census/2011/qs201ew
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White

Asian or Asian British

Black, African, Caribbean or Black British

Other ethnic group

Mixed or multiple ethnic group

4 . Statistical approach

Statistical model choice

The explained variable chosen is a rate and not count data. Given that the rates of mortality from the coronavirus 
(COVID-19) are relatively low if the age-standardised mortality rates (ASMRs) appear normally distributed, it is 
reasonable to apply a standard Poisson-based linear regression. We instead took a standard approach to 
analysing a rate-based outcome in producing a logit transform  and carrying out a standard linear regression of 1

the form:

where P  is the individual level probability of having died from COVID-19 between Weeks 11 (week ending 13 g
March 2020) and 14 (week ending 3 April 2020) of the pandemic in England.

Model building

Exposure periods are, unsurprisingly, strongly colinear and so could not be included in models simultaneously. 
We instead began by choosing the exposure period -- from those available -- for each air pollutant with the 
strongest correlation with age-adjusted death rates. All exposure periods were put alone into a linear model with 
the logit-transformed cumulative deaths data by Week 24 (week ending 12 June) of 2020. The exposure period 
with the strongest p-value was chosen. The ethnicity percentages are also colinear, so the same approach was 
taken choosing a single ethnicity to include.

The first analysis carried out was to run regressions with each air pollutant against the cumulative deaths for each 
week from Week 11 of 2020 to Week 24 of 2020. This was used to examine how the raw correlation (if any) 
changed over time.

A model controlling for confounding effects was built (without air pollution data) based on the cumulative death 
data for Week 25 (week ending 19 June) of 2020. The best model was found by carrying out forward and 
backward stepwise regressions, and the model with the strongest actual individual consumption (AIC) from the 
two methods was chosen. Once the control model was chosen, we added the 10-year average exposure data for 
PM  and NO  individually to examine their effect. We then carried out sensitivity testing by removing each 2.5 2
control variable in turn to examine the impact on air pollution correlations and vice versa.
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1.  

Governance

This work was commissioned from the Office for National Statistics (ONS) by the Scientific Advisory Group for 
Emergencies (SAGE). The Chairs of both the  and the Air Quality Expert Group (AQEQ) Committee on the 

 were both on a steering group alongside representatives from Public Medical Effects of Air Pollutants (COMEAP)
Health England (PHE) hosted by the Department for Environment, Food and Rural Affairs (Defra), which helped 
guide the direction of the analysis. COMEAP, as a committee, had reservations about the sampling approach and 
how it might differ from more traditional approaches using standard governance- or census-based geography. 
COMEAP suggested, at a minimum, that sensitivity analysis in which the numbers of groups in each metric used 
in sampling are changed and results are compared is carried out in future work. The ONS is releasing this work 
as a first indication of findings and will take guidance on the demand for future work from SAGE. Other work 
looking at the drivers of COVID-19-related mortality will continue.

Notes for: Statistical approach

For example, Warton, D.I. and Hui, F.K.C. (2011), The arcsine is asinine: the analysis of proportions in 
ecology. Ecology, 92: 3 to 10. doi:10.1890/10-0340.1

5 . Results

Exposure period choice and initial exploration of the raw correlations

NO , NO  and PM  all had their strongest correlations with logit deaths for 10-year exposures. Ozone, on the x 2 2.5
other hand, showed a stronger correlation with a five-year exposure. Ozone was the only pollutant to show a 
negative correlation with logit deaths.

https://uk-air.defra.gov.uk/library/aqeg/
https://www.gov.uk/government/groups/committee-on-the-medical-effects-of-air-pollutants-comeap
https://www.gov.uk/government/groups/committee-on-the-medical-effects-of-air-pollutants-comeap
https://doi.org/10.1890/10-0340.1
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Table 1: Logit(age-standardised mortality rates (ASMR) for the coronavirus (COVID-19) in Week 21 2020) 
regressed on average air pollutant exposures over different periods of time

Pollutant Exposure Period Coefficient P_value

NO 10 years 0.019 7.73E-07

NO 5 years 0.02 1.38E-06

NO 1 years 0.022 1.71E-06

Ozone 10 years -0.061 7.11E-03

Ozone 5 years -0.317 3.67E-06

Ozone 3 years -0.22 3.79E-06

PM . 10 years 0.088 2.42E-04

PM . 5 years 0.091 4.28E-04

PM . 3 years 0.082 7.84E-04

PM . 1 years 0.087 3.48E-04

NO 10 years 0.034 5.80E-07

NO 5 years 0.036 7.92E-07

NO 3 years 0.036 1.13E-06

NO 1 years 0.038 8.07E-07

Source: Office for National Statistics – Coronavirus and the effect of air pollution on mortality in England

However, scatterplots of each pollutant at the chosen exposure period against death rates suggest no visible 
correlation for PM , a weak positive correlation for NO  and NO  and a weak negative correlation for ozone.2.5 2 x

Figure 1: Weak visual positive relationship between NO  and age-adjusted death rate2

Scatterplot of age-adjusted death rate against average NO  concentration, England, Week 24 20202

Download this chart

.XLSX

Figure 2: Weak visual positive relationship between NO  and age-adjusted death ratex

Scatterplot of age-adjusted death rate against average NO  concentrations, England, Week 24 2020x

Download this chart

.XLSX

https://www.ons.gov.uk/visualisations/dvc934/datadownload/fig1.xlsx
https://www.ons.gov.uk/visualisations/dvc934/datadownload/fig2.xlsx
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Figure 3: Weak visual negative relationship between ozone and age-adjusted death rate

Scatterplot of age-adjusted death rate against average ozone exposure, England, Week 24 2020

Download this chart

.XLSX

Figure 4: Weak visual positive relationship between PM  and age-adjusted death rate2.5

Scatterplot of age-adjusted death rate against average PM  exposure, England, Week 24 20202.5

Download this chart

.XLSX

https://www.ons.gov.uk/visualisations/dvc934/datadownload/fig3.xlsx
https://www.ons.gov.uk/visualisations/dvc934/datadownload/fig4.xlsx


Page 13 of 21

Figure 5: Age-adjusted death rate for the highest-level pollution is statistically different from all other 
groups, but the picture is more uncertain below that

Average age-adjusted death rate per 100,000 against PM2.5 exposure group

Source: Office for National Statistics – Coronavirus and the effect of air pollution on mortality in England

Figure 5 shows the average coronavirus (COVID-19) death rate by air pollution grouping. There is an apparent -- 
uncontrolled -- higher death rate in the highest air pollution group but no clear pattern among the remaining 
groups.

Ethnicity

The approach taken in this article is not well suited to teasing apart impacts on a specific ethnic group. There was 
significant correlation between the percentages of each ethnicity in the population with each other. The 
percentage of the White population had a coefficient of at least negative 0.94 for all other ethnicities. The lowest 
level of correlation was between the percentages of Black and Asian ethnic groups in a population (0.87). We 
therefore chose a single ethnicity to include in the control models based on its correlation with logit-adjusted 
deaths in Week 24 (week ending 12 June) 2020.
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Table 2: Logit (age-standardised mortality rates (ASMR) for the coronavirus (COVID-19) in Week 24 2020) 
regressed on the percentage of the population from different (broad) ethnic groups

Ethnicity Estimate Lower Upper P

White -2.27 -2.83 -1.71 2.20E-13

Mixed 17.84 12.65 23.03 1.90E-10

Asian 4.27 3.22 5.32 1.76E-13

Black 6.76 4.95 8.57 7.12E-12

Other 28.44 20.48 36.4 4.30E-11

Source: Office for National Statistics – Coronavirus and the effect of air pollution on mortality in England

Table 2 show that the percentage of the population of Asian ethnicity has the most significant correlation with logit-
transformed and adjusted death rates in an otherwise uncontrolled model.

Weekly changes

We started by running a simple model of age-adjusted death rate against each pollutant with each model 
approach for every week since Week 11 (week ending 13 March) 2020. Figures 6 and 7 show that the 
correlations between PM , NO  and NO  and COVID-19 mortality found early on in the infection were high, 2.5 2 ~x~
before falling rapidly and then appearing to level out; the negative binomial model shows similar outcomes.

Figure 6: The correlation between PM , NO  and NO  and age-adjusted death rate fell from 2.5 2 x
15 March 2020 to early May as the total deaths increased

Changing weekly correlations between PM , NO  and NO  and COVID-19 death rates based on logit model2.5 2 x

Download this chart

.XLSX

Figure 7: The correlation between ozone and age-adjusted death rate is negative and 
increased from 15 March 2020 to early May as the total deaths increased

Changing weekly correlations between ozone and death rates based on logit model

Download this chart

.XLSX

https://www.ons.gov.uk/visualisations/dvc934/datadownload/fig6a.xlsx
https://www.ons.gov.uk/visualisations/dvc934/datadownload/fig6b.xlsx
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At this stage, we decided to focus on PM  and NO  Ozone is negatively correlated with deaths and there is no 2.5 2.
reason to believe there is a negative causal relationship between ozone and COVID-19 mortality. NO  is removed x
from further analysis since it is highly correlated with NO  (both in terms of concentrations and emissions 2
sources) but with NO  having the slightly stronger correlation.2

Figures 8 and 9 show how the rate of change in the correlation between PM  and death rates may have been 2.5
affected by lockdown. The rate of change slows following lockdown as the rate of deaths begins to slow.

Figure 8: The rate of change in the correlation between exposure to PM  and age-adjusted death rates 2.5
was fastest when the weekly death rate was highest and appeared to stabilise as the lockdown took hold

The correlation between exposure to PM  and logit death by week against total cumulative deaths with the lockdown shown 2.5
as a dashed line in Week 13

Source: Office for National Statistics – Coronavirus and the effect of air pollution on mortality in England
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Figure 9: The rate of change in the correlation between exposure to NO  and age-adjusted death rates 2
was fastest when the weekly death rate was highest and appeared to stabilise as the lockdown took hold

The correlation between exposure to NO  and logit death by week against total cumulative deaths with the lockdown shown as 2
a dashed line in Week 13

Source: Office for National Statistics – Coronavirus and the effect of air pollution on mortality in England

Air pollution impact with control variables

In this subsection, we build a model to control for confounding variables in a stepwise regression. The variables 
available for use were:

hospital admission rate for cardiovascular COVID-19 co-morbidities

hospital admission rate for all other COVID-19 co-morbidities

Index of Multiple Deprivation (IMD) score (excluding the environmental domain)

the percentage of the population who are female

the percentage of the population of Asian ethnicity

population density

the estimated percentage of smokers in the population



Page 17 of 21

Both stepwise approaches chose the following variables with an actual individual consumption (AIC) score of 110 
(abbreviations used in tables in brackets):

hospital admission rate for cardiovascular COVID-19 co-morbidities (cardio comorbidities)

hospital admission rate for all other COVID-19 co-morbidities (other comorbidities)

the percentage of the population of Asian ethnicity (Asian population)

the estimated percentage of smokers in the population (smokers)

All but five of the 175 sample areas experienced some level of COVID-19-related mortality by Week 14 (week 
ending 3 April 2020), and so 170 were included in the analysis.

Tables 3 and 4 show the control model with the addition of PM  and NO  in turn.2.5 2

Table 3: Model controlling for chosen confounding variables alongside 10-year average PM. exposure

Estimate Lower Upper P

(Intercept) -8.74 -9.53 -7.95 <2e-16

Cardio comorbidities 7.65 1.13 14.18 0.02

Other comorbidities 0.03 0 0.05 0.03

Asian Population 2.86 1.12 4.6 0

Smokers 6.2 0.39 12 0.04

PM. 0.01 -0.03 0.06 0.56

Source: Office for National Statistics – Coronavirus and the effect of air pollution on mortality in England

Table 4: Model controlling for chosen confounding variables alongside 10-year average NO exposure

Estimate Lower Upper P

(Intercept) -8.679 -9.302 -8.055 <2e-16

Cardio comorbidities 7.773 1.31 14.235 0.02

Other comorbidities 0.029 0.004 0.055 0.024

Asian Population 2.612 0.733 4.492 0.007

Smokers 5.967 0.193 11.741 0.044

NO 0.006 -0.009 0.022 0.413

Source: Office for National Statistics – Coronavirus and the effect of air pollution on mortality in England
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Sensitivity testing

Tables 5 and 6 show that both PM  and NO  are affected by the removal of all other variables. However, the 2.5 2
removal of comorbidities from the model (individually) further decreases the size and significance of the 
correlation with each air pollutant. The removal of the proportion of the population that are of Asian ethnicity from 
the model significantly increases both the estimated effect size and improves estimated significance. Interestingly, 
the correlation of PM  with deaths shifts to become negative when comorbidities are removed from the model.2.5

1

Table 5: Sensitivity testing on the effect on the correlation between PM. and death rate of removing covariates

Variable removed Coefficient P-value

None 0.013 0.56

Asian Population 0.072 2.41E-07

Cardio comorbidities -0.001 0.97

Other comorbidities -0.001 0.97

Smokers 0.008 0.71

Source: Office for National Statistics – Coronavirus and the effect of air pollution on mortality in England

Table 6: Sensitivity testing on the effect on the correlation between NO and death rate of removing covariates

Variable removed Coefficient P-value

None 0.006 0.41

Asian Population 0.024 4.84E-08

Cardio comorbidities 0.002 0.79

Other comorbidities 0.002 0.76

Smokers 0.029 0.02

Source: Office for National Statistics – Coronavirus and the effect of air pollution on mortality in England

Ethnicity and air pollution

Figures 10 and 11 show clear correlations between ethnicity and air pollution. Exposure to the pollutants NO  and 2
PM  correlate with the percentage of the population that is Asian by 0.82 and 0.75 respectively, indicating very 2.5
high collinearity.

Figure 10: Scatterplot of the proportion of the population that is BAME against average 10 
year NO  concentration2

There is a strong positive visual correlation between ethnicity and concentrations of NO 2
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Download this chart

.XLSX

Figure 11: Scatterplot of the proportion of the population that is BAME against average 10 
year NO  concentration2

There is a strong positive visual correlation between ethnicity and concentrations of PM 2.5

Download this chart

.XLSX

Table 7 shows that the removal and inclusion of air pollutants does affect the correlation of ethnicity with COVID-
19 death rates but that ethnicity remains highly significant in all cases.

Table 7: Correlation of the proportion of the population who are Asian with death rates with and without PM. and 
NO covariates

Model Pollutant included Coefficient P-value

Logit none 3.28 1.62E-09

Logit PM. 2.86 1.57E-03

Logit NO 2.61 7.14E-03

Source: Office for National Statistics – Coronavirus and the effect of air pollution on mortality in England

Impacts on mortality risk

In this subsection, we assume that the correlations we have found are real and significant and attempt to estimate 
what this means for mortality risk from COVID-19. An odds ratio of one equates to no effect, while any movement 
away from one indicates a percentage change from the baseline death rate, not an absolute change in the 
percentage of deaths expected.

By Week 24 (week ending 12 June) 2020, the coefficient estimates (ignoring reversals in correlation) run at 
between 0.01 and 0.07 for PM  and 0.006 to 0.02 for NO  across all models, including those without controls. 2.5 2
The exponential of the coefficient gives us the odds ratio for the logit models.

We therefore found that a 1 µg m  change in 10-year exposure to PM  had odds ratios for COVID-19 mortality -3
2.5

of between 1.01 (statistically insignificant in the controlled model) and 1.07 (removing ethnicity controls). The 
higher estimate is similar to that found by  (1.08); while, in the fully controlled model from this Wu et al. (2020)
article, the estimate has an upper-bounded coefficient of 0.06, indicating a significantly different estimate. The 
model lacking any confounding control variables estimated a slightly stronger effect than Wu et al. with a 
coefficient of 0.88. Coefficients for NO  indicate that a 1 µg m change in 10-year exposure had odds ratios for 2

-3

COVID-19 mortality between 1.006 (statistically insignificant) and 1.02 (where ethnicity is removed from the 
model).

https://www.ons.gov.uk/visualisations/dvc934/datadownload/fig9.xlsx
https://www.ons.gov.uk/visualisations/dvc934/datadownload/fig10.xlsx
https://www.medrxiv.org/content/10.1101/2020.04.05.20054502v2
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1.  

Notes for: Results

The correlation between 10-year PM  exposure and age cardiovascular and "other" comorbidities is 2.5
negative 0.06 and negative 0.22.

6 . Conclusion

Our analysis does not discount the possibility of a correlation between PM  exposure and coronavirus (COVID-2.5
19) related mortality of a similar scale to that found by . However, there is evidence to indicate Wu et al. (2020)
that if there is a causative correlation, it is likely to have a lower level of effect than our higher-end estimates.

Our analysis of the effect of air pollution on COVID-19 is highly sensitive to the time during the pandemic at which 
the analysis is performed, likely because of the progressive spread of the disease outwards from urban, more 
polluted regions. In the period when the death rate remained high, a weekly analysis (controlling only for age and 
no other confounding variables) produces a decreasing degree of correlation with time.

While the early weeks were affected by the incomplete spread of infection, the later weeks were affected by the 
complicated impacts of lockdown on infections, which may have slowed the rate of decline in the correlation 
(without controlling for any confounding variables beyond age). Note also that Figure 5, while a crude 
visualisation, gives some indication that most of the trend is driven by higher rates of COVID-19 deaths in the 
most highly polluted group but with no clear trend in areas of lower pollution. That again might indicate that PM  2.5
and NO  in urban areas are acting as a proxy for the higher rates of infection in cities or other factors associated 2
with area deprivation.

The behaviour of ozone in the analysis provides a further sense check on the hypothesis that we are largely 
observing PM  and NO  acting as proxies for increasingly urban areas. The geographic distribution of NO  and 2.5 2 2
O  across the UK are more or less a mirror image of one another. Urban centres have high NO  and low O , 3 2 3
because of local fast reactions between NO and O . In the suburban and rural environments, NO  is typically low 3 2
(because it has reacted away through oxidation) and O  is high (because it is the end product). The linkage 3
between urban NO, NO  and O  is discussed in the context of COVID-19 in the 2 3 Department for Environment, 

 on air quality changes during lockdown. The ozone anti-correlation in the Food and Rural Affairs (Defra) report
early periods around Weeks 12 (week ending 20 March 2020) to 13 (week ending 27 March 2020) implies some 
kind of protective effect. A more likely interpretation is that ozone concentration in this period is acting as a proxy 
for living in the rural environment.

We cannot fully disentangle the impacts of air pollution from other factors that may be driving disparities in 
outcome for minority ethnic groups because of the high level of correlation between the ethnicity and PM  and 2.5
NO  variables. This may be because air pollution is a significant factor in those disparities, but we can be 2
reasonably certain here that it is not the only factor driving ethnic disparities. The higher-end estimate for PM  is 2.5
taken from a model in which ethnicity is not controlled for, and it is likely an overestimate of the real effect. PM  2.5
and NO  in the absence of ethnicity in the model will act as a proxy for other issues disproportionately affecting 2
ethnic minorities and driving higher death rates.

Most importantly, our analysis indicates that caution should be used in interpreting all data without very strong 
infection rate controls. Individual-level analysis with large datasets and strong infection rate data would be better 
placed to investigate these impacts but would take longer to produce. In addition, individual-level modelling could 
examine more acute exposure around the time of infection.

https://www.medrxiv.org/content/10.1101/2020.04.05.20054502v2
https://uk-air.defra.gov.uk/library/reports.php?report_id=1005
https://uk-air.defra.gov.uk/library/reports.php?report_id=1005
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We recognise that the sampling approach used here is novel in this area of research. We consider it was 
appropriate to apply this approach given the lack of alternatives to deal with the significant challenges this type of 
analysis presents in these circumstances. The Committee on the Medical Effects of Air Pollutants (COMEAP) had 
concerns regarding the novel approach to sampling in terms of its comparability to other research and how 
sensitive our findings might be to the ways in which we broke up the population.

An option for future work would be to use alternate groupings to test the sensitivity of results to alternative sample 
groupings. That work might involve breaking up the sample by proportions of ethnic minorities in the population to 
potentially help tease apart ethnicity and air pollution impacts. If possible, we would also include additional 
confounding variables in the control models such as housing types. However, we would not expect that work to 
necessarily provide a clearer picture of the relationship between air pollution and COVID-19-related mortality 
rates; that will require detailed individual-level analysis to fully disentangle confounding variables and infection 
rate issues. Work on air pollution at an individual level is ongoing within the Office for National Statistics (ONS) 
for London only and is likely to be a more fruitful methodological approach.
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